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A method for solving a nonlinear inverse  problem of heat conduction on e lec t r ica l  models 
is stated. 

As is known, for account of the tempera ture  dependence of thermophysical  cha rac t e r i s t i c s ,  the hea t -  
conduction problem becomes  nonlinear and special  means are  required for  solving it. This also r e fe r s  
to the inverse  heat-conduction problem. 

In [1] methods for  the solution of the direct  heat-conduction problem in a nonlinear formulation on 
e lec t r ica l  models were  discussed.  If we use the same method as in [1] for solving the inverse problem,  
i .e. ,  if we l inearize the heat-conduction equation with the help of t ransformat ions  of the type of a Kirchhoff 
substitution 

T 

0 = j" ~, (T) dT, (1) 
0 

Shneider substitution 

o = [ ~ ( T ) I  2 ( 2 )  

etc . ,  then the main complicat ion will be in the real izat ion of nonlinear boundary conditions of the third kind 

00 
[To - -  T s  (0)1 = - -  - - ,  ( 3 )  

On 

where the form of the function T s (0) is determined by the form of the function • = f(T). 

Unlike devices for the solution of direct heat-conduction problems, the assemblies for the realization 
of the boundary conditions for an inverse problem are more complicated, since the unknown quantity (the 
coefficient (~) should be determined, precisely on them, and not on a passive model, which is free from 
nonlinearities, as occurs in the solution of the direct heat-conduction problem. 

On the basis of the devices developed by us for solving inverse-problems in the nonlinear formula- 
tion, just as for the case of direct problems, we assume methods of nonlinear resistances and combined 
circuits. 

Below we present the circuit of the device that the method of nonlinear resistances is based on. 
According to this method [I], the thermophysical nonlinearities are modelled using nonlinear electrical 
elements, whose volt-ampere characteristics have a form similar to the nonlinearity being modelled. 
Since the experiment shows that the basic form of the nonlinearity in the problems being solved is a para- 
bolic nonlinearity, it seems advisable that we use as nonlinear elements electron multieleetrode tubes 
of pentode type, the anode characteristics of which represent a family of curves of parabolic type 

I = A u  ~ ( 4 )  
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with different coefficients A and exponents n. The value of n depends on the value of the res i s tances  in-  
ser ted in paral le l  and in se r ies  with the tube. As for the coefficient A, its value is determined mainly 
by the bias on the control  grid of the tube. As nonlinear res i s tances  we can also use semiconducting e le -  
ments;  however ,  here  we discuss  only the tube c i rcu i t ,  since a t r ans i s to r  device is still in the develop- 
ment  stage. 

The choice of the tube regime depends on the conditions of the problem. Thus, the exponent n is 
ent irely determined by the form of the function ~ = f(T). For  example,  for  the case  of a l inear t empera -  
ture dependence of the thermal-conduct ivi ty  coefficient,  the function 0 = f(T) proves  to be quadratic,  and 
the exponent n = 1 / 2 .  The coefficient A is the analog of the heat-exchange coefficient a ,  and, hence, the 
la t ter  on the e lec t r ica l  model can be given by the bias on the control  grid of the tube. This c i rcumstance  is 
used in producing the device for  solving the inverse heat-conduction problem,  which is the question that 
is considered below. 

Unlike the devices  for assigning the nonlinear boundary conditions for the solution of the direct  heat -  
conduction problem, when the nonlinearity of the anode charac te r i s t i c s  of the tube was used for modelling 
only the nonlinear t e rm (3), and the l inear  te rm on the model  was real ized by using a cur ren t  regulator ,  
in the presen t  case ,  both t e rms  on the left side of Eq. (3) are  modelled by using tubes. This is due to the 
fact that here  the unknown is the heat-exchange coefficient,  which enters  into both t e rms  on the left side of 
Eq. (3). 

Without loss of general i ty,  for  simplici ty we cons ider  the case  of a l inear function 2, = f(T), when af ter  
using the Shneider formulat ion [Eq. (2)], we can write Eq. (3) in f ini te-difference form as 

~ ( V ~ -  V ~ ) -  o M - o ~  , (5) 
h 

where 0M and O N are  the values of the function 0 at the boundary point and at a point a half-spacing away 
f rom the boundary point; h is the spacing of the grid. 

If, to the boundary point of the pass ive model at which the tempera ture  field of the body is modelled,  
we connect two identical tubes in the manner  shown in Fig. 1, we set V 0 = 0, and the tubes are  f i rs t  ad-  
justed to the n = 0.5 reg ime,  then for  the boundary point we can write the Kirchhoff law as 

Or  

I ~ - - I 1 = I  a 

A ( V W - V ~ )  - v M -  vN , (6) 
r 

where V c, V M, and V N are  the potential-analog of the function 0c, and the potential of the boundary point 
and a point a hal f -spacing away f rom the boundary point; r is the res is tance  between these points. 

The bias on the control  grids of the tubes and, hence,  also the coefficients A in (6) are  determined 
automatical ly as a resul t  of the interact ion between the mismatch  signal and the remaining elements of the 
c i rcu i t  (Fig. 1). This is accomplished as follows. 

After  connecting the pushbutton (PB), the initial grid bias U1 is fed to the control  grids of the tubes 
T1 and T2, the cu r ren t  proceeds  to the boundary point of the passive model (PM), and a cer ta in  potential 
field is formed at the PM. 

The signal f rom the node point of the PM is fed to the input of an a d d e r -  sub[factor  AS, at the second 
input of which is fed the potential f rom a voltage divider [voltage-divider potential] (VDP), corresponding 
to the function 0 at the node point indicated above. F rom the output of the AS, the mismatch  signal is fed to 
the input of the adder  A - l ,  there it is added with the s imi la r  signals fed from the other AS's.  The added 
misma tch  signal U m is fed to the input of the adder A-2,  where it is added with the output signal Ucl, 
which is fed to the second input of A-2, which is fed back to the output of A-2. 

At the output of A-2,  the bias voltage Uel is formed,  which v a r i e s a s  long as the potentials at the 
node points of the model are  not equal to the VDP ' s ,  corresponding to the function 6 at these points. The 
vol tmeter  V, connected between the cathode of tube T1 and its control  grid,  shows the bias voltage, which 
with accuracy  up to a constant factor  gives the magnitude of the heat-exchange coefficient. If the vol tmeter  
scale is cal ibrated taking into account the convers ion fac tors  in W / m  2" deg, then we can immediately obtain 
the value of a .  
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Fig. 1. Diagram i l lustrat ing the solution of the 
problem by the method of nonlinear res i s tances .  

In o rder  for  the cu r ren t  passing through tube T2 to be equal to 12 ~ 4V c, its cathode is connected to 
the node point, and to the anode there is fed the added signal (V M + Vc) from the output of the adder A-4,  
the input of which is connected with the VDP and the boundary point of the model. The coefficient A at the 
anode cha rac te r i s t i c  12 = A V-V c of tube T2 proves  to be equal to the analogous coefficient in the c h a r a c t e r -  
istic of the tube T1, since the bias voltages on the control  grids of both tubes with respec t  to their  r e spec -  
tive cathodes prove to be equa l  This resul ts  from the fact that on the grid of tube T2 there is fed a voltage 
f rom adder A - 3 , w h e r e  the voltage Uct is added to the potential of the boundary node point. 

We note that the proposed ci rcui t  can be used to solve both l inear and nonlinear problems to the same 
extent. Above, we develop the more  complicated case ,  when the tempera ture  dependence of the the rma l -  
conductivity coefficient is taken into account. In the l inear case ,  when it is necessa ry  that the boundary 
conditions 

0T 
a (T c --  Ts) : - -  ) , - - - -  (7) 0,,z 

be satisfied on the model,  we can use the l inear sections of the anode charac te r i s t i c s  of the mult ie lectrode 
tubes or  the control  l inear r e s i s t ances ,  t r iodes,  etc. 

Trans forming  to the method of combined c i rcui t s ,  we recal l  that, in addition to passive models ,  it 
a s sumes  the use of assembl ies  that operate  according to the principle of e lec t r ica l  modelling. 

The proposed device (Fig. 2), in addition to the sys tem operating the added mismatch  signal, which 
is ent irely s imi la r  to that already considered,  includes an adder A-2,  an a d d e r - s u b t r a c t o r  AS-2, a mul t i -  
plication unit MU, a control  cur ren t  regula tor  CR, and a functional t r a n s f o r m e r  FT. 

The device operates  in the following manner .  After  the pushbutton PB is connected at the input of the 
adder  A-2 and then to the multiplication unit MU there is fed a potential proport ional  to a cer ta in  initial 
value a 0. The added mismatch  signal from the adder  A-1 is fed to the input of the adder A-2,  where it 
is added with the signal a ,  which is fed back from the output of A-2. The lat ter  is also fed to the input 
of the multiplication unit MU, where it is multiplied by the output potential of AS-2. The inputs of AS-2 
a re  connected with the VDP and through the functional t r an s fo rmer  FT with the boundary point of the model. 
The output signal of the multiplication unit is fed to the input of the cur ren t  regulator ,  where it is t r ans -  
formed into a current .  

If the input signal is t ransformed in the functional t r a n s f o r m e r  according to a law of inverse  p ropor -  
tionality to the function T = f(0), then at the output of the cu r ren t  regula tor  CR, the cur ren t  formed will be 
propor t ional  to the left side of Eq. (3). 

The value of the heat-exchange coefficient in the appropria te  scale is measured  by a measur ing  de-  
vice at the output of the adder  A-2. 
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Fig. 2. Device for  de te rmin ing  the hea t -exchange  
coeff icient  (method of combined c i rcui ts) .  

Equation (3) can be model led by an e l ec t r i ca l  model  and a lso  by the t radi t ional  method,  i .e . ,  when the 
analog of the t he rm a l  r e s i s t ance  s e r v e s  as the act ive  e l ec t r i ca l  r e s i s t ance .  However ,  in o r d e r  to manage  
without a t r i a l - a n d - e r r o r  method,  and to solve the p rob lem in a single p rocedure ,  this r e s i s t ance  should be 
a cont ro l  r e s i s t ance .  In [2] a fol lower s y s t e m  is  proposed to control  this r e s i s t ance .  Although it was 
intended for  solving the l inear  p rob l em,  it can  a lso  be used to solve the inverse  p rob lem fn a non l inea r  
formulat ion.  Only the value of the hea t -exchange  coeff icient  will be de te rmined  not by the equation 

-- , (8) 
Rh 

as  was the ea se  in [2], but by the m o r e  complex  function 

rO~ Vo - -  VM 
a-.- hRVo T c - T M  (9) 

In this e x p r e s s i o n  the quanti t ies r ,  0 c,  h, Vc, and T c a re  known, and the r e m a i n d e r  a r e  de te rmined  
by d i r ec t  m e a s u r e m e n t .  

Thus,  the rea l iza t ion  of the methods of nonl inear  r e s i s t a n c e s  and combined c i rcu i t s  using the de -  
v ices  desc r ibed  above makes  i t  poss ib le  to solve the inverse  heat-conduct ion p rob lem in the nonlinear 
formula t ion ,  using s tandard c i rcu i t s  of pass ive  models  and e lec t ronic  analog machines  to do this.  

T 
X 
C~ 

I 

U 
R,r 
V 
h 

N O T A T I O N  

is the t empe ra tu r e ;  
is  the the rmal -conduc t iv i ty  coefficient;  
is the hea t -exchange  coefficient;  
is  the e lec t r i c  cu r ren t ;  
is the e lec t r i c  vol tage;  
a r e  the e l ec t r i ca l  r e s i s t ance ;  
is the e lec t r i c  potential;  
is  the spacing of grid. 

S u b s c r i p t s  

s denotes the sur face ;  
c denotes  the medium and a lso  grid;  
M, N denote the appropr ia t e  grid nodes; 
m denotes the m i s m a t c h .  
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